CNLS Workshop

Advances in Raman-Based, High-Speed Photonics: Raman Amplifiers, Data Transmission, and Signal Processing

Los Alamos National Laboratory, Feb. 4, 2003

"Distributed Raman Amplification in deployed Standard Monomode Fiber Links - Measurement and Field Tests"

Franko Kueppers

University of Arizona, Optical Sciences Center, Tucson, AZ [Deutsche Telekom, T-Systems, Technology Center, Darmstadt, Germany]

Introduction

Reviewing previous work on DRA at Deutsche Telekom

- Unrepeatered 40G RZ transmission over 252 km SMF using DRA
- Unrepeatered 160G RZ transmission over 116 km field-installed SMF using DRA

- Re-scaling existing $g_R(\lambda)$ data to deployed fibers
- Field-test of commercial 40 Gbit/s/λ systems using DRA

Introduction

Reviewing previous work on DRA at Deutsche Telekom

- Unrepeatered 40G RZ transmission over 252 km SMF using DRA
- Unrepeatered 160G RZ transmission over 116 km field-installed SMF using DRA

- Re-scaling existing $g_R(\lambda)$ data to deployed fibers
- Field-test of commercial 40 Gbit/s/λ systems using DRA

Unrepeatered 40G RZ transmission over 252 km SMF using DRA - experimental set-up -

Unrepeatered 40G RZ transmission over 252 km SMF using DRA

- measurement results -

Introduction

Reviewing previous work on DRA at Deutsche Telekom

- Unrepeatered 40G RZ transmission over 252 km SMF using DRA
- Unrepeatered 160G RZ transmission over 116 km field-installed SMF using DRA

- Re-scaling existing $g_R(\lambda)$ data to deployed fibers
- Field-test of commercial 40 Gbit/s/λ systems using DRA

Unrepeatered 160G RZ transmission over 116 km field-installed SMF using DRA - experimental set-up -

Unrepeatered 160G RZ transmission over 116 km field-installed SMF using DRA - measurement results -

Introduction

Reviewing previous work on DRA at Deutsche Telekom

- Unrepeatered 40G RZ transmission over 252 km SMF using DRA
- Unrepeatered 160G RZ transmission over 116 km field-installed SMF using DRA

- Re-scaling existing $g_R(\lambda)$ data to deployed fibers
- Field-test of commercial 40 Gbit/s/λ systems using DRA

Distributed Raman amplification in fiber-optic transmission systems

- can help to improve OSNR and to extend span and link lengths
- depens on fiber parameters (Raman gain coefficient $g_R(\lambda)$)
- system design has to be optimized

Measurement set-up for a deployed 115.1 km SMF link

Spectral and spatial attenuation of the deployed 115.1 km SMF link

Measurement and re-scaling of the Raman gain coefficient

Re-scaling of the spectral Raman gain coefficient of the spooled fiber (here by a factor of 1.1) exactly matches the curve of the deployed fiber. Basically, Raman gain coefficient $g_R(\lambda)$ is given by:

$$g_{R}(\lambda) = \frac{2 \cdot A_{eff}}{P_{pump} \cdot L_{eff}} \cdot \ln \left[G_{Raman}^{On-Off}(\lambda) \right]$$

with
$$L_{eff} = \frac{1 - e^{-\alpha \cdot L}}{\alpha}$$

 $\begin{array}{ccc} L_{eff} & effective \ fiber \ length \ at \\ \lambda_{pump} & \\ L & total \ length \ of \ fiber \\ a & attenuation \ at \ \lambda_{pump} \\ A_{eff} & effective \ fiber \ area \ at \\ \lambda_{nump} & \end{array}$

pump power

 $G_{Raman}^{\mathit{On-Off}}$ Raman On-Off Gain

(signal power ratio at fiber output for "pump on" to "pump off")

Comparison simulation – measurement for Raman on-off gain

Input for simulation:

- $g_R(\lambda)$ of spooled/lab fiber
- $g_R(\lambda)$ of field fiber at a <u>single</u> wavelength
- Attenuation (in total)

Result:

Good agreement between simulations (using only a reduced set of parameters) and measurement.

Conclusion

- Cost saving is an issue
 - optimized system (link) design to reduce capex (requires accurate simulation based on reliable data)
 - reduced efforts for pre-installation measurements
- Accurate simulations to predict and optimize system/link design based on a reduced set of data:
 - Raman gain coefficient at a single wavelength of deployed fiber
- No need to specify
 - Raman gain spectrum

Introduction

Reviewing previous work on DRA at Deutsche Telekom

- Unrepeatered 40G RZ transmission over 252 km SMF using DRA
- Unrepeatered 160G RZ transmission over 116 km field-installed SMF using DRA

- Re-scaling existing $g_R(\lambda)$ data to deployed fibers
- Field-test of commercial 40 Gbit/s/λ systems using DRA

Commercialization of distributed Raman amplification

References

- L.D. Garret et al, OFC 2000, Baltimore, postdeadline paper PD42:
- "Field demonstration of distributed Raman amplification with 3.8dB Q-improvement

for 5x120km transmission

- H. Kidorf et al, IEEE Photonics Technology Letters, vol. 11, no. 5, pp. 530-532, May 1999:
- "Pump interactions in a 100-nm Bandwidth Raman Amplifier"
- S. Tariq and J. Palais, IEEE Journal of Lightwave Technologies, vol. 11, no. 12, pp. 1914-1924, Dec. 1993:
- "A Computer Model of Non-Dispersion-Limited Stimulated Raman Scattering
- in Optical Fiber Multiple-Channel Communication"
- G. Agrawal, Nonlinear Fiber Optics, 2nd Edition. New York: Academic Press, 1995
- M. Gunkel, F. Küppers, J. Berger, U. Feiste, R. Ludwig, C. Schubert, C. Schmidt, H.G. Weber, OFC 2001, Anaheim, Technical Digest, TuU3:
- "40 Gb/s RZ unrepeatered Transmission over 252 km SMF using Raman Amplification"
- U. Feiste, R. Ludwig, C. Schubert, J. Berger, C. Schmidt, H.G. Weber, B. Schmauss, A. Munk, B. Buchold, D. Briggmann, F.

Küppers, F. Rumpf, OFC 2001, Anaheim, California, USA, Technical Digest, ThF3:

- "160 Gbit/s Transmission over 116 km Field-Installed Fiber Using 160 Gbit/s OTDM and 40 Gbit/s ETDM"
- U. Feiste, R. Ludwig, C. Schubert, J. Berger, C. Schmidt, H.G. Weber, B. Schmauss, A. Munk, B. Buchold, F. Küppers, F. Rumpf, Electronics Letters, Vol. 37, No. 7, 443-445:
- "160Gbit/s transmission over 116km field-installed fibre using 160Gbit/s OTDM and 40Gbit/s ETDM"

Acknowledgement

D. Briggmann, M. Gunkel, F. Rumpf, W. Weiershausen

Deutsche Telekom T-Systems Technologiezentrum, Darmstadt, Germany

J. Berger, B. Buchold, A. Munk, S.Reichel, B. Schmauss

Lucent Technologies, Nuremberg, Germany

U. Feiste, R. Ludwig, C. Schmidt, C. Schubert, H.G. Weber

Heinrich-Hertz-Institute, Berlin, Germany

Work partially supported by the German Department of Education and Research BMBF in the frame of the project KOMNET.

Raman pump laser source provided by FiTel Technologies.